2022 |
Dadi, Leila; Ethabet, Haifa; Aoun, Mohamed Set-Membership Fault Detection for Discrete-time Switched Linear Systems Conférence 2022, (Cited by: 0). Résumé | Liens | BibTeX | Étiquettes: Actuator fault, Actuators, Bounded disturbances, Cooperativity, Discrete time, Fault detection, Faults detection, Interval observers, Linear matrix inequalities, Linear systems, Set-membership, Stability condition, Switched linear system, Switched system @conference{Dadi2022190b, This work deals with Fault Detection (FD) for a class of discrete-time switched linear systems with actuator faults subject to bounded disturbances. First, based on cooperativity and stability conditions and under the assumption that disturbances and measurement noise are unknown but bounded, upper and lower bounds of the state are calculated using an interval observer. The design conditions of the observer are expressed in terms of Linear Matrix Inequalities (LMIs). Second, a fault detection decision is developed to indicate the presence of faults using interval analysis. Simulation results are provided to illustrate the performance of the proposed fault detection approach. © 2022 IEEE. |
Lamouchi, Rihab; Amairi, Messaoud; Raissi, Tarek; Aoun, Mohamed Robust Fault Detection based on Zonotopic Observers for Linear Parameter Varying Systems Conférence 2022, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Discrete time, Fault detection, Faults detection, Linear parameter varying systems, Linear systems, Measurement Noise, Numerical methods, Performance, Robust fault detection, Sensors faults, Uncertainty, Unknown but bounded, Zonotopes @conference{Lamouchi2022773b, In this paper, zonotopic fault detection methodology is proposed for a class of discrete-Time Linear Parameter Varying (LPV) systems with sensor faults. The disturbances and measurement noise are assumed to be unknown but bounded by zonotope. First, a fault detection observer is designed based on L? performance to attenuate the effects of the uncertainties and to improve the accuracy of the proposed residual framers. Then, the fault sensitivity is taken into account by measuring H-performance and zonotopic residual evaluation is presented. Finally, the effectiveness of the proposed method is demonstrated by a numerical example. © 2022 IEEE. |
Dadi, Leila; Dinh, Thach Ngoc; Raïssi, Tarek; Ethabet, Haifa; Aoun, Mohamed New Finite-Time Observers design for a Discrete-Time Switched Linear System Conférence vol. 55, no. 40, 2022, (Cited by: 0; All Open Access, Bronze Open Access, Green Open Access). Résumé | Liens | BibTeX | Étiquettes: Additive disturbance, Approximate estimation, Discrete time, Exact estimation, Finite-time observers, Fixed time, Initial state, Linear systems, Measurement Noise, Observers designs, Switched linear system @conference{Dadi202273b, In this work, we consider a discrete-time switched linear system. A novel approach is introduced to estimate its state in a finite fixed time which can be arbitrarily chosen and is independent of the initial state. For cases where the additive disturbance and measurement noise are known, we provide an exact estimation. Otherwise, a finite-time interval observer is designed. The crucial idea is based on using past values of the input and output of the studied system and a minimal dwell time condition. Simulation results are provided to illustrate the effectiveness of the proposed techniques in different scenarios of finite time choices. Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
Lamouchi, Rihab; Amairi, Messaoud; Raïssi, Tarek; Aoun, Mohamed Active fault tolerant control using zonotopic techniques for linear parameter varying systems: Application to wind turbine system Article de journal Dans: European Journal of Control, vol. 67, 2022, (Cited by: 3). Résumé | Liens | BibTeX | Étiquettes: Active fault tolerant control, Actuator fault, Actuator fault estimation, Actuators, Discrete time, Discrete time control systems, Discrete-time linear parameter-varying system, Fault estimation, Fault tolerance, Faulting, Linear parameter varying systems, Linear systems, L∞ norm, System stability, Uncertainty analysis, Wind turbine systems, Wind turbines, Zonotopic technique, ∞norm @article{Lamouchi2022g, This paper deals with the design of an Active Fault Tolerant Control (AFTC) approach for polytopic uncertain Linear Parameter-Varying (LPV) systems subject to uncertainties and actuator faults. First, a fault estimation method is developed by integrating robust observer design with zonotopic techniques. The proposed observer is developed using L∞ norm to attenuate the effects of the uncertainties and to improve the accuracy of the estimation. Then, an AFTC strategy is used to compensate actuator fault effect and maintain system stability. Finally, the effectiveness of the proposed method is demonstrated by a case study on a 4.8MW wind turbine benchmark system. © 2022 European Control Association |
Lamouchi, Rihab; Raissi, Tarek; Amairi, Messaoud; Aoun, Mohamed On interval observer design for active Fault Tolerant Control of Linear Parameter-Varying systems Article de journal Dans: Systems and Control Letters, vol. 164, 2022, (Cited by: 5). Résumé | Liens | BibTeX | Étiquettes: Active fault tolerant control, Actuator fault, Actuator fault estimation, Actuators, Discrete time, Discrete time control systems, Discrete-time linear parameter-varying system, Fault estimation, Fault tolerance, Faulting, Interval observers, Linear parameter varying systems, Linear systems, L∞ norm, State feedback, Uncertainty analysis, ∞norm @article{Lamouchi2022h, This paper proposes an active Fault Tolerant Control (FTC) scheme for polytopic uncertain Linear Parameter-Varying (LPV) systems subject to uncertainties and actuator faults. First, a fault estimation interval observer is designed to estimate the system state and the actuator fault. A novel approach is developed using the L∞ norm to attenuate the effects of the uncertainties and to improve the accuracy of the proposed observer. Then, based on the fault estimation information, the FTC strategy is designed using a linear state feedback control law and H∞ technique to compensate actuator faults and maintain system performance and stability, even under faulty conditions. Finally, the effectiveness of the proposed method is demonstrated by its application to a vehicle lateral dynamic nonlinear model. © 2022 Elsevier B.V. |
Dadi, Leila; Ethabet, Haifa; Aoun, Mohamed Set-Membership Fault Detection for Discrete-time Switched Linear Systems Conférence 2022, (Cited by: 0). Résumé | Liens | BibTeX | Étiquettes: Actuator fault, Actuators, Bounded disturbances, Cooperativity, Discrete time, Fault detection, Faults detection, Interval observers, Linear matrix inequalities, Linear systems, Set-membership, Stability condition, Switched linear system, Switched system @conference{Dadi2022190, This work deals with Fault Detection (FD) for a class of discrete-time switched linear systems with actuator faults subject to bounded disturbances. First, based on cooperativity and stability conditions and under the assumption that disturbances and measurement noise are unknown but bounded, upper and lower bounds of the state are calculated using an interval observer. The design conditions of the observer are expressed in terms of Linear Matrix Inequalities (LMIs). Second, a fault detection decision is developed to indicate the presence of faults using interval analysis. Simulation results are provided to illustrate the performance of the proposed fault detection approach. © 2022 IEEE. |
Publications
2022 |
Set-Membership Fault Detection for Discrete-time Switched Linear Systems Conférence 2022, (Cited by: 0). |
Robust Fault Detection based on Zonotopic Observers for Linear Parameter Varying Systems Conférence 2022, (Cited by: 1). |
New Finite-Time Observers design for a Discrete-Time Switched Linear System Conférence vol. 55, no. 40, 2022, (Cited by: 0; All Open Access, Bronze Open Access, Green Open Access). |
Active fault tolerant control using zonotopic techniques for linear parameter varying systems: Application to wind turbine system Article de journal Dans: European Journal of Control, vol. 67, 2022, (Cited by: 3). |
On interval observer design for active Fault Tolerant Control of Linear Parameter-Varying systems Article de journal Dans: Systems and Control Letters, vol. 164, 2022, (Cited by: 5). |
Set-Membership Fault Detection for Discrete-time Switched Linear Systems Conférence 2022, (Cited by: 0). |