2022 |
Lamouchi, Rihab; Raissi, Tarek; Amairi, Messaoud; Aoun, Mohamed On interval observer design for active Fault Tolerant Control of Linear Parameter-Varying systems Article de journal Dans: Systems and Control Letters, vol. 164, 2022, (Cited by: 5). Résumé | Liens | BibTeX | Étiquettes: Active fault tolerant control, Actuator fault, Actuator fault estimation, Actuators, Discrete time, Discrete time control systems, Discrete-time linear parameter-varying system, Fault estimation, Fault tolerance, Faulting, Interval observers, Linear parameter varying systems, Linear systems, L∞ norm, State feedback, Uncertainty analysis, ∞norm @article{Lamouchi2022h, This paper proposes an active Fault Tolerant Control (FTC) scheme for polytopic uncertain Linear Parameter-Varying (LPV) systems subject to uncertainties and actuator faults. First, a fault estimation interval observer is designed to estimate the system state and the actuator fault. A novel approach is developed using the L∞ norm to attenuate the effects of the uncertainties and to improve the accuracy of the proposed observer. Then, based on the fault estimation information, the FTC strategy is designed using a linear state feedback control law and H∞ technique to compensate actuator faults and maintain system performance and stability, even under faulty conditions. Finally, the effectiveness of the proposed method is demonstrated by its application to a vehicle lateral dynamic nonlinear model. © 2022 Elsevier B.V. |
Lamouchi, Rihab; Raissi, Tarek; Amairi, Messaoud; Aoun, Mohamed Interval observer-based methodology for passive fault tolerant control of linear parameter-varying systems Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 44, no. 5, p. 986 – 999, 2022, (Cited by: 4). Résumé | Liens | BibTeX | Étiquettes: Component faults, Control system stability, Control theory, Fault magnitudes, Fault tolerance, Faults tolerant controls, Interval observers, Linear parameter varying systems, Linear systems, LPV systems, Novel methodology, Observer-based, State feedback, Uncertainty, Unknown but bounded @article{Lamouchi2022986b, The paper deals with passive fault tolerant control for linear parameter varying systems subject to component faults. Under the assumption that the faults magnitudes are considered unknown but bounded, a novel methodology is proposed using interval observer with an (Formula presented.) formalism to attenuate the effects of the uncertainties and to improve the accuracy of the proposed observer. The necessary and sufficient conditions of the control system stability are developed in terms of matrix inequalities constraints using Lyapunov stability theory. Based on a linear state feedback, a fault tolerant control strategy is designed to handle component faults effect as well as external disturbances and preserve the system closed-loop stability for both fault-free and component faulty cases. Two simulation examples are presented to demonstrate the effectiveness of the proposed method. © The Author(s) 2021. |
Márquez-Vera, C. A.; Márquez-Vera, M. A.; Yakoub, Z.; Ma’Arif, A.; Castro-Montoya, A. J.; Cázarez-Castro, N. R. Fuzzy state feedback with double integrator and anti-windup for the Van de Vusse reaction Article de journal Dans: Archives of Control Sciences, vol. 32, no. 2, p. 383-408, 2022, ISSN: 12302384, (cited By 0). Résumé | Liens | BibTeX | Étiquettes: Anti-windup; Chemical process; Double integrator; Fuzzy state; Fuzzy state feedback; Integrator windup; LMI; Non-minimum phase systems; Steady state errors; Van de vusse reaction, Chemical modification; Disturbance rejection, State feedback @article{M\'{a}rquez-Vera2022383, Chemical processes use to be non-minimum phase systems. Thereby, they are a challenge for control applications. In this paper, fuzzy state feedback is applied in the Van de Vusse reaction that has an inverse response. The control design has an integrator to enhance the control performance by eliminating the steady-state error when a step reference is applied. An anti-windup action is used to reduce the undershoot in the system response. In practice, it is not possible to have always access to all the state variables. Thus, a fuzzy state observer is implemented via LMIs. Frequently, the papers that show similar applications present some comments about disturbance rejection. To eliminate the steady-state error when a ramp reference is used, in this work, a second integrator is aggregated. Now, the anti-windup also reduces the overshoot generated due to the usage of two integrators in the final application. Copyright © 2022. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited, the use is non-commercial, and no modifications or adaptations are made |
Benjemaa, R.; Elhsoumi, A.; Abdelkrim, M. N. Fault tolerant control for neutral systems with delayed inputs Conférence Institute of Electrical and Electronics Engineers Inc., 2022, ISBN: 9781665471084, (cited By 1). Résumé | Liens | BibTeX | Étiquettes: Additive control; Delayed input; Design problems; Fault tolerant control; Faults tolerant controls; Neutral systems; Neutral time-delay system; Nominal control; Unknown input observer, Additives; Closed loop systems; Control theory; Delay control systems; Fault detection; Fault tolerance; Linear matrix inequalities; Time delay; Timing circuits, State feedback @conference{Benjemaa2022404, In the present paper, the design problem of fault tolerant control for neutral time delay systems with delayed inputs is studied. The proposed control law is composed into two terms, a nominal control and an additive control. The first term presents the designed state feedback proposed to develop a control strategy which maintains the stability and the desired performance in closed loop system, even in presence of faults. In this case, the Linear Matrix Inequality (LMI) resolution method is applied to determine the feedback gain of the controller. The second one is based on adding an additive fault corrective term to the nominal law. Therefore, the use of unknown inputs observers (UIO) presents an efficient solution for the fault detection and estimation. Finally, the effectiveness of the proposed strategy is proven through a numerical example by the application of the theoretical results to a neutral time delay system with delayed inputs. © 2022 IEEE. |
2018 |
Lamouchi, R.; Raïssi, T.; Amairi, M.; Aoun, M. Interval observer framework for fault-tolerant control of linear parameter-varying systems Article de journal Dans: International Journal of Control, vol. 91, no. 3, p. 524 – 533, 2018, (Cited by: 35). Résumé | Liens | BibTeX | Étiquettes: Actuator fault, Actuators, Closed loop systems, Convergence of numerical methods, Discrete-time Luenberger observer, Fault tolerance, Fault tolerant control, Interval observers, Linear parameter varying systems, Linear state feedback, Linear systems, LPV systems, State feedback @article{Lamouchi2018524b, This paper addresses the problem of passive fault-tolerant control for linear parameter-varying systems subject to actuator faults. The FTC, based on a linear state feedback, is designed to compensate the impact of actuator faults on system performance by stabilising the closed-loop system using interval observers. The design of interval observers is based on the discrete-time Luenberger observer structure, where uncertainties and faults with known bounds are considered. Sufficient conditions for the existence of the proposed observer are explicitly provided. Simulation results are presented to show the effectiveness of the proposed approach. © 2017 Informa UK Limited, trading as Taylor & Francis Group. |
2017 |
Lamouchi, Rihab; Amairi, Messaoud; Raïssi, Tarek; Aoun, Mohamed Actuator Fault Compensation in a Set-membership Framework for Linear Parameter-Varying Systems Conférence vol. 50, no. 1, 2017, (Cited by: 11; All Open Access, Bronze Open Access, Green Open Access). Résumé | Liens | BibTeX | Étiquettes: Actuator fault, Actuators, Closed loop stability, Convergence of numerical methods, External disturbances, Interval estimation, Interval observers, Linear parameter varying systems, Linear state feedback, Linear systems, State feedback, Unknown but bounded @conference{Lamouchi20174033b, This paper presents an actuator fault compensation approach for a class of Linear Parameter-Varying (LPV) systems with noisy measurements. The proposed method is based on interval estimation assuming that the fault vector and the external disturbances are unknown but bounded. The main idea consists in designing a control law, based on a linear state feedback, to guarantee closed-loop stability. An additive control, based on fault bounds, is used to compensate the impact of actuator faults on system performances. The closed-loop stability of the robust fault compensation scheme is established in the Lyapunov sense. Finally, the theoretical results are illustrated using a numerical example. © 2017 |
Achnib, Asma; Chetoui, Manel; Lanusse, Patrick; Aoun, Mohamed A comparative study of the output and the state feedback predictive control Conférence 2017, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Automation, Comparative studies, Feedback, Model predictive control, Output feedback, Predictive control, Process control, Robustness (control systems), State feedback, State feedback predictive control, System models @conference{Achnib201734b, In this paper the effectiveness of predictive control in the problems of tracking and control is studied. The principle and the implementation of the algorithm of this control are presented. In this work, two approaches using different system models are developed: The output feedback and the state feedback predictive control. The performances and the robustness of both approaches are assessed with the help of two examples. © 2016 IEEE. |
2016 |
Lamouchi, R.; Raïssi, T.; Amairi, M.; Aoun, M. Fault tolerant control in a set-membership framework Conférence 2016, (Cited by: 3). Résumé | Liens | BibTeX | Étiquettes: Actuator fault, Actuators, Bounded disturbances, Bounded noise, Control laws, Control methods, Control strategies, Fault tolerance, Faults tolerant controls, Interval observers, Linear control systems, Linear time-invariant system, Numerical methods, Set-membership, State feedback @conference{Lamouchi20161099b, In this paper, a Passive Fault Tolerant Control (PFTC) strategy for Linear Time Invariant (LTI) systems subject to actuator faults is proposed. The idea of this PFTC method is to compute a control law to cope with additive actuator faults using interval observers. The considered system is assumed to be subject to bounded noises and disturbances without any additional assumptions. The FTC is implemented as a state linear feedback control and designed using interval observers techniques. A numerical example shows the efficiency of the proposed technique. © 2016 EUCA. |
Publications
2022 |
On interval observer design for active Fault Tolerant Control of Linear Parameter-Varying systems Article de journal Dans: Systems and Control Letters, vol. 164, 2022, (Cited by: 5). |
Interval observer-based methodology for passive fault tolerant control of linear parameter-varying systems Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 44, no. 5, p. 986 – 999, 2022, (Cited by: 4). |
Fuzzy state feedback with double integrator and anti-windup for the Van de Vusse reaction Article de journal Dans: Archives of Control Sciences, vol. 32, no. 2, p. 383-408, 2022, ISSN: 12302384, (cited By 0). |
Fault tolerant control for neutral systems with delayed inputs Conférence Institute of Electrical and Electronics Engineers Inc., 2022, ISBN: 9781665471084, (cited By 1). |
2018 |
Interval observer framework for fault-tolerant control of linear parameter-varying systems Article de journal Dans: International Journal of Control, vol. 91, no. 3, p. 524 – 533, 2018, (Cited by: 35). |
2017 |
Actuator Fault Compensation in a Set-membership Framework for Linear Parameter-Varying Systems Conférence vol. 50, no. 1, 2017, (Cited by: 11; All Open Access, Bronze Open Access, Green Open Access). |
A comparative study of the output and the state feedback predictive control Conférence 2017, (Cited by: 1). |
2016 |
Fault tolerant control in a set-membership framework Conférence 2016, (Cited by: 3). |