2022 |
Dadi, Leila; Dinh, Thach Ngoc; Raïssi, Tarek; Ethabet, Haifa; Aoun, Mohamed New Finite-Time Observers design for a Discrete-Time Switched Linear System Conférence vol. 55, no. 40, 2022, (Cited by: 0; All Open Access, Bronze Open Access, Green Open Access). Résumé | Liens | BibTeX | Étiquettes: Additive disturbance, Approximate estimation, Discrete time, Exact estimation, Finite-time observers, Fixed time, Initial state, Linear systems, Measurement Noise, Observers designs, Switched linear system @conference{Dadi202273b, In this work, we consider a discrete-time switched linear system. A novel approach is introduced to estimate its state in a finite fixed time which can be arbitrarily chosen and is independent of the initial state. For cases where the additive disturbance and measurement noise are known, we provide an exact estimation. Otherwise, a finite-time interval observer is designed. The crucial idea is based on using past values of the input and output of the studied system and a minimal dwell time condition. Simulation results are provided to illustrate the effectiveness of the proposed techniques in different scenarios of finite time choices. Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
2021 |
Dadi, Leila; Ethabet, Haifa; Aoun, Mohamed Zonotope based Fault Tolerant Control for Discrete-Time Linear Time-Invariant Systems Conférence 2021, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Actuators, Control problems, Discrete time control systems, Discrete-time linear time-invariant systems, Estimation techniques, Fault tolerance, Faults tolerant controls, H ∞, H∞approach, Interval estimation, Invariance, Linear control systems, Linear time-invariant system, Observers designs, Time invariant systems, Time varying control systems, Zonotopes @conference{Dadi2021144b, This paper considers Faut Tolerant Control (FTC) problem for discrete-time Linear Time-Invariant systems (LTI) affected by faults on actuator. First, zonotope-based interval estimation technique is proposed, which integrate robust observer design with zonotopic analysis. By introducing H∞ performances in the observer design, the designed technique reduce the effects of uncertainties and improve the interval estimation accuracy. Based on the robust designed observer, the interval state estimation can be realized via a zonotopic analysis. Second, a FTC is designed to stabilize the close-loop system subject to actuator faults. The control law design is based on zonotopic technique, guaranteeing closed-loop stability. Simulation results are provided to illustrate the performance of the proposed method. © 2021 IEEE. |
Publications
2022 |
New Finite-Time Observers design for a Discrete-Time Switched Linear System Conférence vol. 55, no. 40, 2022, (Cited by: 0; All Open Access, Bronze Open Access, Green Open Access). |
2021 |
Zonotope based Fault Tolerant Control for Discrete-Time Linear Time-Invariant Systems Conférence 2021, (Cited by: 1). |