2024 |
Ounis, W.; Chetoui, M.; Najar, S.; Aoun, M. Fully real-time configurable analogue implementation of continuous-time transfer function: Application on fractional controller Article de journal Dans: AEU – International Journal of Electronics and Communications, vol. 178, 2024, ISSN: 14348411, (cited By 0). Résumé | Liens | BibTeX | Étiquettes: Analog circuits; Anti-aliasing; Continuous time systems; Low pass filters; Resistors; Timing circuits; Transfer functions; Voltage dividers, Continous time; Fractional-order controllers; Higher order dynamics systems; Low-pass filters; Programmable analog circuit; Programmable analogs; Real- time; Second orders; Smart controller; Time transfer, Controllers @article{Ounis2024, This paper proposes a new electronic analog circuit to realize real-time fully configurable continuous-time transfer function. The proposed circuit serves various purposes, including smart controllers, fractional-order controllers, optimal controllers, anti-aliasing filter, and programmable filters. The input signal of the transfer function is continuous and remains continuous throughout the circuit until the output signal is obtained. The proposed approach decomposes the transfer function into elementary first and/or second-order low-pass filters. A new analog first-order low-pass filter circuit is presented, offering advantages over conventional active first-order low-pass filters circuits. These benefits include DC gain and time constant independent of resistor ohmic values, enabling the use of smaller resistors and capacitors for low frequencies, and an expanded frequency working range. Similarly, a new analog circuit for a second-order low-pass filter is proposed, specifically used to obtain complex conjugate poles. The use of digital potentiometers and digital switches controlled by a micro-controller, makes this analog circuit configurable in real-time. As an application, the new circuit is used to realize fractional integrator controller. The circuit gives good similarity between theoretical and experimental measurements. © 2024 Elsevier GmbH |
2023 |
Moussa, N. B. Ben; Chetoui, M.; Amairi, M. Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 9798350327564, (cited By 0). Résumé | Liens | BibTeX | Étiquettes: Controllers, Electric control equipment; Particle swarm optimization (PSO); Proportional control systems; Three term control systems; Time domain analysis, Fractional-order controllers; Multiple input single output systems; Multiple inputs single outputs; Particle swarm; Particle swarm optimization; PID; PID controllers; Swarm optimization; System control; Time domain @conference{BenMoussa2023, This paper deals with design of fractional-order PID controllers for Multiple-Input Single-Output (MISO) systems control. The controllers parameters are tuned by using the Particle Swarm Optimization (PSO) technique. The proposed idea is to design a SISO fractional order controller of each SISO subsystem by using the whole MISO system output and the desired-loop performances. Three different criteria are used in the PSO optimization technique. The performances of the fractional-order controllers are compared with those obtained with rational-order controllers through a numerical example. © 2023 IEEE. |
Ounis, Walid; Chetoui, Manel; Najar, Salheddine; Aoun, Mohamed Programmable analogue fractional controller realization Conférence 2023. Résumé | Liens | BibTeX | Étiquettes: Analog circuits, Continuous time systems, Controllers, Digital potentiometer, First order, First order low-pass filter, Fractional integrators, Fractional-order controllers, Higher order dynamics systems, Low pass filters, Low-pass filters, Operational amplifiers, Potentiometers (electric measuring instruments), Programmable analog circuit, Programmable analogs, Real- time, Signal processing, Timing circuits @conference{Ounis2023b, A fractional-order controller is an infinite-memory system. It is described by a continuous time irrational transfer function. Its realization is a delicate problem especially when its parameters are real time tunable. This paper presents a real-time programmable analogue fractional controller implementation. The controller is based on a sum of a novel real-time programmable analogue first-order low-pass filter. The signal within the circuit remains analogue and is not converted into discrete values. Real-time adjustments are made using digital potentiometers and operational amplifiers. The proposed first-order low-pass filter offers several advantages. In particular, the time constant and DC gain are independently adjusted without relying on the ohmic value of digital potentiometers. The time constant and DC gain depend on the resolution of the digital potentiometers. The high resolution of the digital potentiometer enables the circuit to achieve a wide bandwidth and allows for the use of small capacitors at lower frequencies. The proposed real-time programmable analogue fractional controller is experimented to achieve a fractional integrator. The circuit yields good similarity between theoretical simulations and experimental measurements. © 2023 IEEE. |
2022 |
Walid, Ounis; Slaheddine, Najar; Mohamed, Aoun REAL TIME TUNEABLE ANALOGUE PID CONTROLLER REALIZATION Conférence 2022, (Cited by: 0). Résumé | Liens | BibTeX | Étiquettes: Analog realization, Continuous time systems, Controller realization, Controllers, Discretization issue, Discretizations, Electric control equipment, PID controllers, Proportional control systems, Real- time, Three term control systems, Tunable analog PID, Tunable controller, Tunables, Voltage dividers @conference{Walid2022798b, This paper proposes a real time tunable analogue PID controller realisation witch can be used as a conventional PID, an adaptative PID or an intelligent PID ‘iPID’. The integral and derivative of the PID input signal are continuous time signals and never sampled. This avoid discretization issues such as aliasing phenomena and the critical sampling period choice. The operative PID circuit part is totally analogue. Few digital potentiometers and digital switches are used. This allows to tune the parameters values of the controller and select PI, PD, PID configuration. The analogue circuit part is designed with a new original circuit architecture. A prototype of the circuit is implemented. Experimentation results show good similarity to the theoretical simulations. © 2022 IEEE. |
Walid, Ounis; Slaheddine, Najar; Mohamed, Aoun REAL TIME TUNEABLE ANALOGUE PID CONTROLLER REALIZATION Conférence 2022, (Cited by: 0). Résumé | Liens | BibTeX | Étiquettes: Analog realization, Continuous time systems, Controller realization, Controllers, Discretization issue, Discretizations, Electric control equipment, PID controllers, Proportional control systems, Real- time, Three term control systems, Tunable analog PID, Tunable controller, Tunables, Voltage dividers @conference{Walid2022798, This paper proposes a real time tunable analogue PID controller realisation witch can be used as a conventional PID, an adaptative PID or an intelligent PID ‘iPID’. The integral and derivative of the PID input signal are continuous time signals and never sampled. This avoid discretization issues such as aliasing phenomena and the critical sampling period choice. The operative PID circuit part is totally analogue. Few digital potentiometers and digital switches are used. This allows to tune the parameters values of the controller and select PI, PD, PID configuration. The analogue circuit part is designed with a new original circuit architecture. A prototype of the circuit is implemented. Experimentation results show good similarity to the theoretical simulations. © 2022 IEEE. |
2020 |
Gasmi, Noussaiba; Boutayeb, Mohamed; Thabet, Assem; Aoun, Mohamed; Frej, Ghazi Bel Haj Robust sliding window observer-based controller design for Lipschitz discrete-time systems Conférence vol. 53, no. 2, 2020, (Cited by: 1; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Controllers, Digital control systems, Discrete – time systems, Discrete time control systems, H ∞ criterion, Lipschitz, Lipschitz non-linearity, Observer-based, Observer-based controllers, Observer-based stabilization design, Performance, Sliding Window, Sliding window approach, Stabilization, Uncertain systems @conference{Gasmi20205970b, The aim of this paper is to develop a new observer-based stabilization strategy for a class of Lipschitz uncertain systems. This new strategy improves the performances of existing methods and ensures better convergence conditions. The observer and the controller are enriched with sliding windows of measurements and estimated states, respectively. This technique allows to increase the number of decision variables and thus get less restrictive and more general LMI conditions. The established sufficient stability conditions are in the form of Bilinear Matrix Inequality (BMI). The obtained constraint is transformed, through a useful approach, to a more suitable one easily tractable by standard software algorithms. Numerical example is given to illustrate the performances of the proposed approach. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license |
Dkhil, A.; Chetoui, M.; Amairi, M. Optimization-based design of fractional PI controller for a three phase grid connected PV system Conférence Institute of Electrical and Electronics Engineers Inc., 2020, ISBN: 9781728110806, (cited By 3). Résumé | Liens | BibTeX | Étiquettes: Comparative analysis; Current controller; Fractional-order controllers; Grid connected PV system; Grid-connected photovoltaic system; Maximum Power Point Tracking; Optimization algorithms; Proportional integral, Controllers, Maximum power point trackers; Robust control; Two term control systems @conference{Dkhil2020440, This paper presents a robust control of a grid connected photovoltaic (PV) system. Fractional-order proportional-integral (FO-PI) and integer-order proportional-integral (IO-PI) current controllers are proposed. An optimization algorithm is implemented in order to determine the two current controllers parameters. A comparative analysis of the FO-PI and IO-PI improves the effectivness of current control using fractional order controller. In the proposed system, the control strategy enhances stability and system robustness, maximum power point tracking (MPPT) and total harmonic minimization. © 2020 IEEE. |
2019 |
Ettouil, R.; Chabir, K.; Sauter, D.; Abdelkrim, M. N. Synergetic Control for HVAC System Control and VAV Box Fault Compensation Article de journal Dans: International Journal of Applied Mathematics and Computer Science, vol. 29, no. 3, p. 555-570, 2019, ISSN: 1641876X, (cited By 2). Résumé | Liens | BibTeX | Étiquettes: Air conditioning; HVAC; Robustness (control systems); Structural design, Controllers, External disturbances; Fault compensation; HVAC system; Lyapunov approach; Reconfigurable control; Synergetic control; Synergetic theory; Variable air volume @article{Ettouil2019555, Synergetic control is proposed for heating, ventilating and air-conditioning (HVAC) system control. The synergetic controller is developed using the nonlinear model of the HVAC system. Occupancy information in each zone is required in the design of the controller which offers inherent comfort according to the occupancy in the zone. The stability of the building system using the proposed control is verified through the Lyapunov approach. It is also proved that the synergetic controller is robust to external disturbances. Then, synergetic theories are used to design a reconfigurable control for damper stuck failures in variable air volume (VAV) to recover the nominal performance. Simulations are provided to validate the effectiveness of the proposed controller for a three-zone building. © 2019 Radhia Ettouil et al., published by Sciendo. |
Achnib, Asma; Airimitoaie, Tudor-Bogdan; Lanusse, Patrick; Abrashov, Sergey; Aoun, Mohamed; Chetoui, Manel Discrete-time robust control with an anticipative action for preview systems Article de journal Dans: Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 141, no. 3, 2019, (Cited by: 8; All Open Access, Green Open Access). Résumé | Liens | BibTeX | Étiquettes: Closed loop systems, Control methodology, Controllers, Digital control systems, Discrete – time systems, Discrete time control systems, Feedback control, Feedback controller, Feedforward filters, Leveling (machinery), Model uncertainties, Motion control, Reference signals, Robust control, Robust controller design, Robust feedback controllers, Robustness (control systems), Signal processing, Uncertainty analysis, Water tanks @article{Achnib2019c, A discrete-time robust controller design method is proposed for optimal tracking of future references in preview systems. In the context of preview systems, it is supposed that future values of the reference signal are available a number of time steps ahead. The objective is to design a control algorithm that minimizes a quadratic error between the reference and the output of the system and at the same time achieves a good level of the control signal. The proposed solution combines a robust feedback controller with a feedforward anticipative filter. The feedback controller’s purpose is to assure robustness of the closed-loop system to model uncertainties. Any robust control methodology can be used (such as μ-synthesis, qft, or crone control). The focus of this paper will be on the design of the feedforward action in order to introduce the anticipative effect with respect to known future values of the reference signal without hindering the robustness achieved through the feedback controller. As such, the model uncertainties are taken into account also in the design of the feedforward anticipative filter. The proposed solution is validated in simulation and on an experimental water tank level control system. © 2019 American Society of Mechanical Engineers (ASME). All rights reserved. |
2018 |
Gasmi, Noussaiba; Boutayeb, Mohamed; Thabet, Assem; Aoun, Mohamed H∞ Observer-Based Controller for Lipschitz Nonlinear Discrete-Time Systems Conférence 2018, (Cited by: 0). Résumé | Liens | BibTeX | Étiquettes: Bilinear matrix, Controllers, Design Methodology, Design problems, Digital control systems, Discrete time control systems, Linear matrix inequalities, Lipschitz property, Nonlinear discrete-time systems, Observer-based, Observer-based controllers, Robustness (control systems), Slack variables @conference{Gasmi2018771b, Within the paper, a relevant H∞observer-based controller design for a class of Lipschitz nonlinear discrete-time systems is proposed. Usually, Bilinear Matrix Inequaities (BMIs) are obtained from the resolution of the observer-based stabilization design problem for this class of systems. Since, the resolution of a BMI is a hard task, then it is interesting to search for a convenient way to linearize the obtained conditions. Therefore, the objective of this paper is to present new Linear Matrix Inequality (LMI) conditions ensuring the convergence of the observer-based controller in a noisy context. Thanks to the introduction of a slack variable the presented LMI conditions are more general and less conservative than the existence ones. Indeed, reformulations of the Lipschitz property and Young’s relation in a convenient way lead to a more relaxed new LMI. A numerical example is implemented to show high performances of the proposed design methodology with respect to some existing results. © 2018 IEEE. |
Achnib, Asma; Airimitoaie, Tudor-Bogdan; Lanusse, Patrick; Guefrachi, Ayadi; Aoun, Mohamed; Chetoui, Manel Anticipative Robust Design Applied to a Water Level Control System Conférence 2018, (Cited by: 4). Résumé | Liens | BibTeX | Étiquettes: Controllers, Design, Digital control systems, Discrete – time systems, Discrete time control systems, Experimental test benches, Feedforward filters, Level control, Leveling (machinery), Quadratic errors, Reference signals, Reference-tracking, Robust control, Robust controller design, Robust feedback controllers, Water levels @conference{Achnib2018863b, In this paper, a discrete-time robust controller design method for optimal reference tracking in preview systems is validated on an experimental test bench. In the context of preview systems, it is supposed that future values of the reference signal are available a number of time steps ahead. The objective is to design a control algorithm that minimizes a quadratic error between the reference and the output of the system. The proposed solution combines a robust feedback controller with a feedforward anticipative filter. The theoretical description of this new approach is given and experimental results on a water level control system are presented. © 2018 European Control Association (EUCA). |
Gasmi, N.; Boutayeb, M.; Thabet, A.; Aoun, M. H∞ Observer-Based Controller for Lipschitz Nonlinear Discrete-Time Systems Conférence Institute of Electrical and Electronics Engineers Inc., 2018, ISBN: 9781538678909, (cited By 0). Résumé | Liens | BibTeX | Étiquettes: Bilinear matrix; Design Methodology; Design problems; Lipschitz property; Nonlinear discrete-time systems; Observer-based; Observer-based controllers; Slack variables, Controllers, Digital control systems; Discrete time control systems; Linear matrix inequalities; Robustness (control systems) @conference{Gasmi2018771, Within the paper, a relevant H∞observer-based controller design for a class of Lipschitz nonlinear discrete-time systems is proposed. Usually, Bilinear Matrix Inequaities (BMIs) are obtained from the resolution of the observer-based stabilization design problem for this class of systems. Since, the resolution of a BMI is a hard task, then it is interesting to search for a convenient way to linearize the obtained conditions. Therefore, the objective of this paper is to present new Linear Matrix Inequality (LMI) conditions ensuring the convergence of the observer-based controller in a noisy context. Thanks to the introduction of a slack variable the presented LMI conditions are more general and less conservative than the existence ones. Indeed, reformulations of the Lipschitz property and Young’s relation in a convenient way lead to a more relaxed new LMI. A numerical example is implemented to show high performances of the proposed design methodology with respect to some existing results. © 2018 IEEE. |
Gasmi, Noussaiba; Boutayeb, Mohamed; Thabet, Assem; Aoun, Mohamed Enhanced LMI conditions for observer-based H∞ stabilization of Lipschitz discrete-time systems Article de journal Dans: European Journal of Control, vol. 44, p. 80 – 89, 2018, (Cited by: 8). Résumé | Liens | BibTeX | Étiquettes: Control nonlinearities, Controller designs, Controllers, Decoding, Delayed state, Digital control systems, Discrete – time systems, Discrete time control systems, Linear matrix inequalities, Linear matrix inequality approach, Lipschitz systems, Noise analyse, Observer-based controller design, Observer-based controllers, Robustness (control systems), Sliding Window, Sliding window of measurement @article{Gasmi201880b, This paper deals with H∞ observer-based controller design for a class of discrete-time systems with Lipschitz nonlinearities. Usually, the observer-based control synthesis for the considered class of systems leads to the feasibility of a Bilinear Matrix Inequality (BMI). Since, solving a BMI constraint has been an NP-hard optimization problem, then linearizing this constraint to get a convex one is an interesting issue because Linear Matrix Inequalities (LMIs) are easily tractable by numerical softwares (LMI Toolboxes,.). Hence, the aim of this paper is to develop a new Linear Matrix Inequality (LMI) condition, ensuring the H∞ asymptotic convergence of the observer-based controller. Due to the introduction of a slack variable technique, the usual BMI problem is equivalently transformed to a more suitable one, which leads to less conservative and more general LMI condition compared to the existing methods in the literature. Conjointly to the slack variable technique, the Lipschitz property and the Young’s relation are used in a reformulated way to obtain additional decision variables in the LMI. In the aim to further relax the proposed LMI methodology, sliding windows of delayed states and measurements are included in the structures of the controller and the observer, respectively. The obtained LMI is more general and less conservative than the first one, which can be viewed as a particular solution. To show the effectiveness and superiority of the proposed methodology, some numerical examples and comparisons are provided. © 2018 European Control Association |
2017 |
Yakoub, Z.; Amairi, M.; Chetoui, M.; Saidi, B.; Aoun, M. Model-free adaptive fractional order control of stable linear time-varying systems Article de journal Dans: ISA Transactions, vol. 67, p. 193 – 207, 2017, (Cited by: 22). Résumé | Liens | BibTeX | Étiquettes: Adaptive control systems, Calculations, Controllers, Fractional calculus, Fractional order control, Fractional pid controllers, Frequency characteristic, Frequency domain analysis, Linear time-varying systems, Model-free adaptive control, Numerical methods, Numerical optimizations, Optimization, Robustness (control systems), Selective filtering, Three term control systems, Time varying control systems @article{Yakoub2017193b, This paper presents a new model-free adaptive fractional order control approach for linear time-varying systems. An online algorithm is proposed to determine some frequency characteristics using a selective filtering and to design a fractional PID controller based on the numerical optimization of the frequency-domain criterion. When the system parameters are time-varying, the controller is updated to keep the same desired performances. The main advantage of the proposed approach is that the controller design depends only on the measured input and output signals of the process. The effectiveness of the proposed method is assessed through a numerical example. © 2017 ISA |
Hmed, Amina Ben; Amairi, Messaoud; Aoun, Mohamed Robust stabilization and control using fractional order integrator Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 39, no. 10, p. 1559 – 1576, 2017, (Cited by: 8). Résumé | Liens | BibTeX | Étiquettes: Calculations, Control design, Controllers, Delay control systems, Fractional calculus, Fractional-order integrator, Robust stability, Robustness (control systems), Smith predictors, Stabilization, Uncertain systems @article{BenHmed20171559b, This paper addresses the robust stabilization problem of first-order uncertain systems. To treat the robust stabilization problem, an interval-based stabilization method using stability conditions of the non-commensurate elementary fractional transfer function of the second kind is developed. Some analytic expressions are determined to compute the set of all stabilizing controller parameters and plot the stability boundary. A robust performance control is also developed to fulfil some desired time-domain performances as the iso-overshoot property. The fractional controller can be used combined with the Smith predictor to control a first-order system with time delay and achieve desired specifications. Numerical examples are presented to illustrate the obtained results. © 2017, © The Author(s) 2017. |
Yakoub, Z.; Chetoui, M.; Amairi, M.; Aoun, M. Model-based fractional order controller design Conférence vol. 50, no. 1, 2017, (Cited by: 3; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Bias elimination, Closed loops, Controllers, Fractional differentiation, Frequency domain analysis, Identification for control, Least squares approximations, Optimization, Process control, Recursive least square (RLS) @conference{Yakoub201710431b, This paper deals with model-based fractional order controller design. The objective is identification for controller design in order to achieve the desired closed-loop performances. Firstly, the fractional order closed-loop bias-eliminated least squares method is used to identify the process model. Then, based on the numerical optimization of a frequency-domain criterion, the fractional controller is designed. If the proposed algorithm detects any changes in the process parameters, the controller is updated to keep the same performances. A numerical example is presented to show the efficiency of the proposed scheme. © 2017 |
Hmed, Amina Ben; Amairi, Messaoud; Aoun, Mohamed Robust stabilization and control using fractional order integrator Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 39, no. 10, p. 1559 – 1576, 2017, (Cited by: 8). Résumé | Liens | BibTeX | Étiquettes: Calculations, Control design, Controllers, Delay control systems, Fractional calculus, Fractional-order integrator, Robust stability, Robustness (control systems), Smith predictors, Stabilization, Uncertain systems @article{BenHmed20171559c, This paper addresses the robust stabilization problem of first-order uncertain systems. To treat the robust stabilization problem, an interval-based stabilization method using stability conditions of the non-commensurate elementary fractional transfer function of the second kind is developed. Some analytic expressions are determined to compute the set of all stabilizing controller parameters and plot the stability boundary. A robust performance control is also developed to fulfil some desired time-domain performances as the iso-overshoot property. The fractional controller can be used combined with the Smith predictor to control a first-order system with time delay and achieve desired specifications. Numerical examples are presented to illustrate the obtained results. © 2017, © The Author(s) 2017. |
Guefrachi, Ayadi; Najar, Slaheddine; Amairi, Messaoud; Aoun, Mohamed Tuning of Fractional Complex Order PID Controller Conférence vol. 50, no. 1, 2017, (Cited by: 22; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Calculations, Complex order controllers, Controlled system robustness, Controllers, Delay control systems, Design, Electric control equipment, Fractional calculus, Frequency and time domains, Frequency domain analysis, Gain variations, Numeric optimization, Numerical methods, Numerical optimizations, Optimization, PID controllers, Proportional control systems, Robust control, Three term control systems, Time domain analysis @conference{Guefrachi201714563b, This paper deals with a new structure of Fractional Complex Order Controller (FCOC) with the form PIDx+iy, in which x and y are the real and imaginary parts of the derivative complex order, respectively. A tuning method for the Controller based on numerical optimization is presented to ensure the controlled system robustness toward gain variations and noise. This can be obtained by fulfilling five design requirements. The proposed design method is applied for the control of a Second Order Plus Time Delay resonant system. The effectiveness of the FCOC design method is checked through frequency and time domain analysis. © 2017 |
2016 |
Rhouma, T.; Keller, J. Y.; Chabir, K.; Sauter, D.; Abdelkrim, M. N. vol. 2016-November, IEEE Computer Society, 2016, ISSN: 21621195, (cited By 1). Résumé | Liens | BibTeX | Étiquettes: Controller reconfiguration; Cyber-physical systems (CPS); False data injection attacks; Fault detection and isolation; Fault tolerant control; Fault tolerant control systems; Linear Quadratic Gaussian controllers; Non-minimum phase plants, Controllers, Embedded systems; Fault detection; Fault tolerance; Fault tolerant computer systems; Mathematical transformations @conference{Rhouma2016750, Security of Cyber-Physical Systems (CPS) against Cyber attacks has become an important challenging research field. False data injections on control and/or measurement signals of a Fault-Tolerant Control System (FTCS) can be treated as detectable virtual actuator or sensor faults. In this case, the FTCS can automatically accommodate false data injections by triggering the controller reconfiguration mechanism at detection time given by the mode-based Fault Detection and Isolation (FDI) algorithm. We show that an intelligent adversary can destabilize the non minimum phase plant of the FTCS by designing a false data injection attack on the control signal while remaining undetectable from any passive FDI algorithm. By using a confining coding method able to block the attack signal on a minimum number of encoded control signals, this paper proposes to transform stealthy false data injections into detectable attacks from an active FTCS based on a switching Linear Quadratic Gaussian (LQG) controller. © 2016 IEEE. |
2015 |
Belgacem, A.; Salem, Y. Ben; Abdelkrim, M. N. Institute of Electrical and Electronics Engineers Inc., 2015, ISBN: 9781479917587, (cited By 3). Résumé | Liens | BibTeX | Étiquettes: Asynchronous machinery; Computer circuits; Electric drives; Fault tolerance; Fuzzy logic; Induction motors; Reconfigurable hardware; Torque; Torque control; Variable structure control, Controllers, Direct torque control; Dual three-phase induction machines; Dual three-phase induction motor; Electromagnetic torques; Fuzzy controllers; Fuzzy logic controllers; modified DTC; Six-phase induction machines @conference{Belgacem2015, The aim of this paper is to control a dual three induction motor drives under open phases. The DTC is a variable structure control strategy with simplicity, fast response, and tolerance to motor parameter variation, which provides direct control of stator flux and electromagnetic torque by optimally selecting the inverter states in each sampling period. Conventional DTC of dual three induction motor has the limitations of constant duty ratio for every switching period and high torque and flux ripples. To solve these problems and ameliorate the performances of this control method, a fuzzy logic controller is used instead of the hysteresis torque and flux controller to minimizing the torque and flux ripple. The faulted mode of the six phase induction machine leads to torque oscillations and poor tracking behavior. In this way, this paper presents a new modified fuzzy DTC for dual three phase induction motor under open phase. The performance of the modified fuzzy DTC is evaluated through simulation and it is shown to be superior to the conventional DTC in term of minimization the torque and flux ripple under open phase. © 2015 IEEE. |
Hmed, A. Ben; Amairi, M.; Aoun, M. Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Analytic expressions, Calculations, Closed loop systems, Control, Controllers, DC motors, Electric machine control, Fractional calculus, Fractional-order controllers, Invariance, Linear systems, Linear time invariant systems, Numerical methods, Resonance, Second-order systemss, Stability regions, Stabilization, Stabilization problems, Time domain analysis, Time varying control systems, Time-domain specifications @conference{BenHmed2015e, The paper deals with the stabilization problem of the Linear Time Invariant system. In this work, we present a new method of stabilization addressed to the first and second order unstable system in order to guarantee the stability and the time domain performances. Analytic expressions are developed in the purpose of setting the stabilizing parameters of the controller by describing the stability region. Moreover, the time domain-curves of the desired closed-loop system are used to show time domain specifications. Finally, some numerical examples and a control of DC motor are proposed in order to show the benefits and the reliability of the new technique. © 2015 IEEE. |
Azaiez, Wiem; Chetoui, Manel; Aoun, Mohamed Analytic approach to design PID controller for stabilizing fractional systems with time delay Conférence 2015, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Controllers, dual-locus diagram, Electric control equipment, Fractional differentiation, Fractional systems, Graphical criteria, Optimal controller, PID controller design, PID controllers, Proportional control systems, Stability regions, Three term control systems, Time delay @conference{Azaiez2015b, The paper considers the problem of PID controller design for stabilizing fractional systems with time delay. An analytic approach developed for rational systems with time delay is extended for fractional systems with time delay. It consists in determining the stability regions in the PID controller parameters planes and choosing the optimal controller by analyzing the stability of the closed-loop corrected system using a graphical criterion, like the dual-locus diagram. The performances of the proposed approach are illustrated using two numerical examples. © 2015 IEEE. |
Hmed, A. Ben; Amairi, M.; Aoun, M. Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Analytic expressions, Calculations, Closed loop systems, Control, Controllers, DC motors, Electric machine control, Fractional calculus, Fractional-order controllers, Invariance, Linear systems, Linear time invariant systems, Numerical methods, Resonance, Second-order systemss, Stability regions, Stabilization, Stabilization problems, Time domain analysis, Time varying control systems, Time-domain specifications @conference{BenHmed2015c, The paper deals with the stabilization problem of the Linear Time Invariant system. In this work, we present a new method of stabilization addressed to the first and second order unstable system in order to guarantee the stability and the time domain performances. Analytic expressions are developed in the purpose of setting the stabilizing parameters of the controller by describing the stability region. Moreover, the time domain-curves of the desired closed-loop system are used to show time domain specifications. Finally, some numerical examples and a control of DC motor are proposed in order to show the benefits and the reliability of the new technique. © 2015 IEEE. |
2014 |
Hmed, A. Ben; Amairi, M.; Aoun, M. Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Automation, Closed loop systems, Closed-loop behavior, Control design, Controller designs, Controllers, Convergence of numerical methods, Design, Fractional controllers, Fractional systems, Fractional-order controllers, Numerical methods, Resonance, Time domain, Time domain analysis, Time-domain specifications @conference{BenHmed2014462c, This paper deals with the design of a fractional controller to achieve a desired closed loop system. Based on the resonance and time-domain studies of the desired closed-loop behavior, the controller design is carried out by a pole-compensator method. Numerical examples are proposed to show the efficiency of the proposed technique. © 2014 IEEE. |
Hmed, A. Ben; Amairi, M.; Aoun, M. Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Automation, Closed loop systems, Closed-loop behavior, Control design, Controller designs, Controllers, Convergence of numerical methods, Design, Fractional controllers, Fractional systems, Fractional-order controllers, Numerical methods, Resonance, Time domain, Time domain analysis, Time-domain specifications @conference{BenHmed2014462b, This paper deals with the design of a fractional controller to achieve a desired closed loop system. Based on the resonance and time-domain studies of the desired closed-loop behavior, the controller design is carried out by a pole-compensator method. Numerical examples are proposed to show the efficiency of the proposed technique. © 2014 IEEE. |
Amairi, M.; Aoun, M.; Saidi, B. Design of robust fractional order PI for FOPDT systems via set inversion Conférence 2014, (Cited by: 4). Résumé | Liens | BibTeX | Étiquettes: Controllers, Design approaches, Different frequency, First order plus dead time, Fractional controllers, Fractional order pI, Interval analysis, Robustness (control systems), Set inversion via interval analysis, Time delay, Uncertainty, Uncertainty analysis @conference{Amairi20141166b, This paper presents a new design approach of a fractional order PI controller for uncertain system with delay. The method uses the set inversion via interval analysis approach to determine the three parameters of the controller in accordance with different frequency specifications. When applied to uncertain delay system, the method computes the interval of each parameter providing the desired performances. Some numerical examples illustrate the effectiveness of the proposed approach in the case of an uncertain first order plus dead time system. © 2014 IEEE. |
Publications
2024 |
Fully real-time configurable analogue implementation of continuous-time transfer function: Application on fractional controller Article de journal Dans: AEU – International Journal of Electronics and Communications, vol. 178, 2024, ISSN: 14348411, (cited By 0). |
2023 |
Institute of Electrical and Electronics Engineers Inc., 2023, ISBN: 9798350327564, (cited By 0). |
Programmable analogue fractional controller realization Conférence 2023. |
2022 |
REAL TIME TUNEABLE ANALOGUE PID CONTROLLER REALIZATION Conférence 2022, (Cited by: 0). |
REAL TIME TUNEABLE ANALOGUE PID CONTROLLER REALIZATION Conférence 2022, (Cited by: 0). |
2020 |
Robust sliding window observer-based controller design for Lipschitz discrete-time systems Conférence vol. 53, no. 2, 2020, (Cited by: 1; All Open Access, Bronze Open Access). |
Optimization-based design of fractional PI controller for a three phase grid connected PV system Conférence Institute of Electrical and Electronics Engineers Inc., 2020, ISBN: 9781728110806, (cited By 3). |
2019 |
Synergetic Control for HVAC System Control and VAV Box Fault Compensation Article de journal Dans: International Journal of Applied Mathematics and Computer Science, vol. 29, no. 3, p. 555-570, 2019, ISSN: 1641876X, (cited By 2). |
Discrete-time robust control with an anticipative action for preview systems Article de journal Dans: Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, vol. 141, no. 3, 2019, (Cited by: 8; All Open Access, Green Open Access). |
2018 |
H∞ Observer-Based Controller for Lipschitz Nonlinear Discrete-Time Systems Conférence 2018, (Cited by: 0). |
Anticipative Robust Design Applied to a Water Level Control System Conférence 2018, (Cited by: 4). |
H∞ Observer-Based Controller for Lipschitz Nonlinear Discrete-Time Systems Conférence Institute of Electrical and Electronics Engineers Inc., 2018, ISBN: 9781538678909, (cited By 0). |
Enhanced LMI conditions for observer-based H∞ stabilization of Lipschitz discrete-time systems Article de journal Dans: European Journal of Control, vol. 44, p. 80 – 89, 2018, (Cited by: 8). |
2017 |
Model-free adaptive fractional order control of stable linear time-varying systems Article de journal Dans: ISA Transactions, vol. 67, p. 193 – 207, 2017, (Cited by: 22). |
Robust stabilization and control using fractional order integrator Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 39, no. 10, p. 1559 – 1576, 2017, (Cited by: 8). |
Model-based fractional order controller design Conférence vol. 50, no. 1, 2017, (Cited by: 3; All Open Access, Bronze Open Access). |
Robust stabilization and control using fractional order integrator Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 39, no. 10, p. 1559 – 1576, 2017, (Cited by: 8). |
Tuning of Fractional Complex Order PID Controller Conférence vol. 50, no. 1, 2017, (Cited by: 22; All Open Access, Bronze Open Access). |
2016 |
vol. 2016-November, IEEE Computer Society, 2016, ISSN: 21621195, (cited By 1). |
2015 |
Institute of Electrical and Electronics Engineers Inc., 2015, ISBN: 9781479917587, (cited By 3). |
Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). |
Analytic approach to design PID controller for stabilizing fractional systems with time delay Conférence 2015, (Cited by: 1). |
Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). |
2014 |
Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). |
Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). |
Design of robust fractional order PI for FOPDT systems via set inversion Conférence 2014, (Cited by: 4). |