2018 |
Achnib, Asma; Airimitoaie, Tudor-Bogdan; Lanusse, Patrick; Guefrachi, Ayadi; Aoun, Mohamed; Chetoui, Manel Anticipative Robust Design Applied to a Water Level Control System Conférence 2018, (Cited by: 4). Résumé | Liens | BibTeX | Étiquettes: Controllers, Design, Digital control systems, Discrete – time systems, Discrete time control systems, Experimental test benches, Feedforward filters, Level control, Leveling (machinery), Quadratic errors, Reference signals, Reference-tracking, Robust control, Robust controller design, Robust feedback controllers, Water levels @conference{Achnib2018863b, In this paper, a discrete-time robust controller design method for optimal reference tracking in preview systems is validated on an experimental test bench. In the context of preview systems, it is supposed that future values of the reference signal are available a number of time steps ahead. The objective is to design a control algorithm that minimizes a quadratic error between the reference and the output of the system. The proposed solution combines a robust feedback controller with a feedforward anticipative filter. The theoretical description of this new approach is given and experimental results on a water level control system are presented. © 2018 European Control Association (EUCA). |
Publications
2018 |
Anticipative Robust Design Applied to a Water Level Control System Conférence 2018, (Cited by: 4). |