2017 |
Guefrachi, Ayadi; Najar, Slaheddine; Amairi, Messaoud; Aoun, Mohamed Tuning of Fractional Complex Order PID Controller Conférence vol. 50, no. 1, 2017, (Cited by: 22; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Calculations, Complex order controllers, Controlled system robustness, Controllers, Delay control systems, Design, Electric control equipment, Fractional calculus, Frequency and time domains, Frequency domain analysis, Gain variations, Numeric optimization, Numerical methods, Numerical optimizations, Optimization, PID controllers, Proportional control systems, Robust control, Three term control systems, Time domain analysis @conference{Guefrachi201714563b, This paper deals with a new structure of Fractional Complex Order Controller (FCOC) with the form PIDx+iy, in which x and y are the real and imaginary parts of the derivative complex order, respectively. A tuning method for the Controller based on numerical optimization is presented to ensure the controlled system robustness toward gain variations and noise. This can be obtained by fulfilling five design requirements. The proposed design method is applied for the control of a Second Order Plus Time Delay resonant system. The effectiveness of the FCOC design method is checked through frequency and time domain analysis. © 2017 |
Guefrachi, A.; Najar, S.; Amairi, M.; Aoun, M. Tuning of Fractional Complex Order PID Controller Conférence vol. 50, no. 1, Elsevier B.V., 2017, ISSN: 24058963, (cited By 24). Résumé | Liens | BibTeX | Étiquettes: Calculations; Controllers; Delay control systems; Design; Electric control equipment; Frequency domain analysis; Numerical methods; Optimization; Proportional control systems; Robust control; Three term control systems, Complex order controllers; Controlled system robustness; Fractional calculus; Frequency and time domains; Gain variations; Numeric optimization; Numerical optimizations; PID controllers, Time domain analysis @conference{Guefrachi201714563, This paper deals with a new structure of Fractional Complex Order Controller (FCOC) with the form PIDx+iy, in which x and y are the real and imaginary parts of the derivative complex order, respectively. A tuning method for the Controller based on numerical optimization is presented to ensure the controlled system robustness toward gain variations and noise. This can be obtained by fulfilling five design requirements. The proposed design method is applied for the control of a Second Order Plus Time Delay resonant system. The effectiveness of the FCOC design method is checked through frequency and time domain analysis. © 2017 |
2015 |
Hmed, A. Ben; Amairi, M.; Aoun, M. Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Analytic expressions, Calculations, Closed loop systems, Control, Controllers, DC motors, Electric machine control, Fractional calculus, Fractional-order controllers, Invariance, Linear systems, Linear time invariant systems, Numerical methods, Resonance, Second-order systemss, Stability regions, Stabilization, Stabilization problems, Time domain analysis, Time varying control systems, Time-domain specifications @conference{BenHmed2015c, The paper deals with the stabilization problem of the Linear Time Invariant system. In this work, we present a new method of stabilization addressed to the first and second order unstable system in order to guarantee the stability and the time domain performances. Analytic expressions are developed in the purpose of setting the stabilizing parameters of the controller by describing the stability region. Moreover, the time domain-curves of the desired closed-loop system are used to show time domain specifications. Finally, some numerical examples and a control of DC motor are proposed in order to show the benefits and the reliability of the new technique. © 2015 IEEE. |
Hmed, A. Ben; Amairi, M.; Aoun, M. Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Analytic expressions, Calculations, Closed loop systems, Control, Controllers, DC motors, Electric machine control, Fractional calculus, Fractional-order controllers, Invariance, Linear systems, Linear time invariant systems, Numerical methods, Resonance, Second-order systemss, Stability regions, Stabilization, Stabilization problems, Time domain analysis, Time varying control systems, Time-domain specifications @conference{BenHmed2015e, The paper deals with the stabilization problem of the Linear Time Invariant system. In this work, we present a new method of stabilization addressed to the first and second order unstable system in order to guarantee the stability and the time domain performances. Analytic expressions are developed in the purpose of setting the stabilizing parameters of the controller by describing the stability region. Moreover, the time domain-curves of the desired closed-loop system are used to show time domain specifications. Finally, some numerical examples and a control of DC motor are proposed in order to show the benefits and the reliability of the new technique. © 2015 IEEE. |
Hmed, A. Ben; Amairi, M.; Aoun, M. Stabilizing fractional order controller design for first and second order systems Conférence Institute of Electrical and Electronics Engineers Inc., 2015, ISBN: 9781479917587, (cited By 1). Résumé | Liens | BibTeX | Étiquettes: Analytic expressions; Fractional calculus; Fractional-order controllers; Linear time invariant systems; Second-order systemss; Stability regions; Stabilization problems; Time-domain specifications, Calculations; Closed loop systems; Control; Controllers; DC motors; Electric machine control; Invariance; Linear systems; Numerical methods; Resonance; Stabilization; Time varying control systems, Time domain analysis @conference{BenHmed2015, The paper deals with the stabilization problem of the Linear Time Invariant system. In this work, we present a new method of stabilization addressed to the first and second order unstable system in order to guarantee the stability and the time domain performances. Analytic expressions are developed in the purpose of setting the stabilizing parameters of the controller by describing the stability region. Moreover, the time domain-curves of the desired closed-loop system are used to show time domain specifications. Finally, some numerical examples and a control of DC motor are proposed in order to show the benefits and the reliability of the new technique. © 2015 IEEE. |
2014 |
Hmed, A. Ben; Amairi, M.; Aoun, M. Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Automation, Closed loop systems, Closed-loop behavior, Control design, Controller designs, Controllers, Convergence of numerical methods, Design, Fractional controllers, Fractional systems, Fractional-order controllers, Numerical methods, Resonance, Time domain, Time domain analysis, Time-domain specifications @conference{BenHmed2014462b, This paper deals with the design of a fractional controller to achieve a desired closed loop system. Based on the resonance and time-domain studies of the desired closed-loop behavior, the controller design is carried out by a pole-compensator method. Numerical examples are proposed to show the efficiency of the proposed technique. © 2014 IEEE. |
Hmed, A. Ben; Amairi, M.; Aoun, M. Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Automation, Closed loop systems, Closed-loop behavior, Control design, Controller designs, Controllers, Convergence of numerical methods, Design, Fractional controllers, Fractional systems, Fractional-order controllers, Numerical methods, Resonance, Time domain, Time domain analysis, Time-domain specifications @conference{BenHmed2014462c, This paper deals with the design of a fractional controller to achieve a desired closed loop system. Based on the resonance and time-domain studies of the desired closed-loop behavior, the controller design is carried out by a pole-compensator method. Numerical examples are proposed to show the efficiency of the proposed technique. © 2014 IEEE. |
Hmed, A. Ben; Amairi, M.; Aoun, M. Fractional order controller design using time-domain specifications Conférence Institute of Electrical and Electronics Engineers Inc., 2014, ISBN: 9781479959075, (cited By 1). Résumé | Liens | BibTeX | Étiquettes: Automation; Closed loop systems; Controllers; Convergence of numerical methods; Design; Numerical methods; Resonance, Closed-loop behavior; Control design; Controller designs; Fractional controllers; Fractional systems; Fractional-order controllers; Time domain; Time-domain specifications, Time domain analysis @conference{BenHmed2014462, This paper deals with the design of a fractional controller to achieve a desired closed loop system. Based on the resonance and time-domain studies of the desired closed-loop behavior, the controller design is carried out by a pole-compensator method. Numerical examples are proposed to show the efficiency of the proposed technique. © 2014 IEEE. |
2004 |
Aoun, Mohamed; Malti, Rachid; Levron, François; Oustaloup, Alain Numerical simulations of fractional systems: An overview of existing methods and improvements Article de journal Dans: Nonlinear Dynamics, vol. 38, no. 1-4, p. 117 – 131, 2004, (Cited by: 117). Résumé | Liens | BibTeX | Étiquettes: Approximation theory, Computer simulation, Continuous time model, Differential equations, Discrete time model, Fractional calculus, Fractional model, Functions, Identification (control systems), Laplace transforms, Mathematical models, Time domain analysis @article{Aoun2004117b, An overview of the main simulation methods of fractional systems is presented. Based on Oustaloup’s recursive poles and zeros approximation of a fractional integrator in a frequency band some improvements are proposed. They take into account boundary effects around outer frequency limits and simplify the synthesis of a rational approximation by eliminating arbitrarily chosen parameters. © 2004 Kluwer Academic Publishers. |
Aoun, Mohamed; Malti, Rachid; Levron, François; Oustaloup, Alain Numerical simulations of fractional systems: An overview of existing methods and improvements Article de journal Dans: Nonlinear Dynamics, vol. 38, no. 1-4, p. 117 – 131, 2004, (Cited by: 117). Résumé | Liens | BibTeX | Étiquettes: Approximation theory, Computer simulation, Continuous time model, Differential equations, Discrete time model, Fractional calculus, Fractional model, Functions, Identification (control systems), Laplace transforms, Mathematical models, Time domain analysis @article{Aoun2004117, An overview of the main simulation methods of fractional systems is presented. Based on Oustaloup’s recursive poles and zeros approximation of a fractional integrator in a frequency band some improvements are proposed. They take into account boundary effects around outer frequency limits and simplify the synthesis of a rational approximation by eliminating arbitrarily chosen parameters. © 2004 Kluwer Academic Publishers. |
Publications
2017 |
Tuning of Fractional Complex Order PID Controller Conférence vol. 50, no. 1, 2017, (Cited by: 22; All Open Access, Bronze Open Access). |
Tuning of Fractional Complex Order PID Controller Conférence vol. 50, no. 1, Elsevier B.V., 2017, ISSN: 24058963, (cited By 24). |
2015 |
Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). |
Stabilizing fractional order controller design for first and second order systems Conférence 2015, (Cited by: 1). |
Stabilizing fractional order controller design for first and second order systems Conférence Institute of Electrical and Electronics Engineers Inc., 2015, ISBN: 9781479917587, (cited By 1). |
2014 |
Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). |
Fractional order controller design using time-domain specifications Conférence 2014, (Cited by: 1). |
Fractional order controller design using time-domain specifications Conférence Institute of Electrical and Electronics Engineers Inc., 2014, ISBN: 9781479959075, (cited By 1). |
2004 |
Numerical simulations of fractional systems: An overview of existing methods and improvements Article de journal Dans: Nonlinear Dynamics, vol. 38, no. 1-4, p. 117 – 131, 2004, (Cited by: 117). |
Numerical simulations of fractional systems: An overview of existing methods and improvements Article de journal Dans: Nonlinear Dynamics, vol. 38, no. 1-4, p. 117 – 131, 2004, (Cited by: 117). |