2016 |
Salem, Thouraya; Chetoui, Manel; Aoun, Mohamed 2016, (Cited by: 9). Résumé | Liens | BibTeX | Étiquettes: Continuous time systems, Continuous-time, Differential equations, Estimation, Fractional differential equations, Fractional differentiation, Identification (control systems), Instrumental variables, Intelligent systems, Linear parameter varying models, Linear parameter varying systems, Linear systems, LPV systems, Monte Carlo methods, Parameter estimation, Refined instrumental variables, Religious buildings @conference{Salem2016640b, This paper deals with continuous-time linear parameter varying (LPV) system identification with fractional models. Two variants of instrumental variables based techniques are proposed to estimate continuous-time parameters of a fractional differential equation linear parameter varying model when all fractional orders are assumed known a priori: the first one is the instrumental variables estimator based in an auxiliary model. The second one is the simplified refined instrumental variables estimator. A comparison study between the developed estimators is done via a numerical example. A Monte Carlo simulation analysis results are presented to illustrate the performances of the proposed methods in the presence of an additive output noise. © 2016 IEEE. |
2013 |
Chetoui, Manel; Thomassin, Magalie; Malti, Rachid; Aoun, Mohamed; Najar, Slaheddine; Abdelkrim, Mohamed Naceur; Oustaloup, Alain New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Algorithms, commensurate order, Differential equations, Errors, Errors in variables, Estimation, Fractional differentiation, Higher order statistics, Identification (control systems), Identification problem, Iterative least squares, Least squares algorithm, Non-linear optimization algorithms, Third-order cumulant @article{Chetoui2013860b, The errors-in-variables identification problem concerns dynamic systems in which input and output signals are contaminated by an additive noise. Several estimation methods have been proposed for identifying dynamic errors-in-variables rational models. This paper presents new consistent methods for order and coefficient estimation of continuous-time systems by errors-in-variables fractional models. First, differentiation orders are assumed to be known and only differential equation coefficients are estimated. Two estimators based on Higher-Order Statistics (third-order cumulants) are developed: the fractional third-order based least squares algorithm (ftocls) and the fractional third-order based iterative least squares algorithm (ftocils). Then, they are extended, using a nonlinear optimization algorithm, to estimate both the differential equation coefficients and the commensurate order. The performances of the proposed algorithms are illustrated with a numerical example. |
Chetoui, Manel; Thomassin, Magalie; Malti, Rachid; Aoun, Mohamed; Najar, Slaheddine; Abdelkrim, Mohamed Naceur; Oustaloup, Alain New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Algorithms, commensurate order, Differential equations, Errors, Errors in variables, Estimation, Fractional differentiation, Higher order statistics, Identification (control systems), Identification problem, Iterative least squares, Least squares algorithm, Non-linear optimization algorithms, Third-order cumulant @article{Chetoui2013860, The errors-in-variables identification problem concerns dynamic systems in which input and output signals are contaminated by an additive noise. Several estimation methods have been proposed for identifying dynamic errors-in-variables rational models. This paper presents new consistent methods for order and coefficient estimation of continuous-time systems by errors-in-variables fractional models. First, differentiation orders are assumed to be known and only differential equation coefficients are estimated. Two estimators based on Higher-Order Statistics (third-order cumulants) are developed: the fractional third-order based least squares algorithm (ftocls) and the fractional third-order based iterative least squares algorithm (ftocils). Then, they are extended, using a nonlinear optimization algorithm, to estimate both the differential equation coefficients and the commensurate order. The performances of the proposed algorithms are illustrated with a numerical example. |
Hrizi, O.; Boussaid, B.; Abdelkrim, M. N.; Aubrun, C. Fast adaptive fault estimation algorithm: Application to unicycle rOBOT Conférence 2013, ISSN: 21621195, (cited By 9). Résumé | Liens | BibTeX | Étiquettes: Adaptive actuator; Adaptive controllers; Fault estimation; Unicycle robots, Estimation, Linear matrix inequalities; Mobile robots @conference{Hrizi2013714, This paper studies a novel approach of fast fault estimation based on adaptive actuator fault diagnosis observer. A derivative action is added to the adaptive controller to improve the fault estimation response. Then, to acquire the designed parameters, a linear matrix inequalities (LMI) problem is formulated. At the end, the efficiency of the proposed approach is demonstrated using a unicycle robot. © 2013 IEEE. |
Publications
2016 |
2016, (Cited by: 9). |
2013 |
New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). |
New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). |
Fast adaptive fault estimation algorithm: Application to unicycle rOBOT Conférence 2013, ISSN: 21621195, (cited By 9). |