2023 |
Saafi, Omar; Dabbaghi, Boudour; Hamidi, Faical; Aoun, Mohamed 2023. Résumé | Liens | BibTeX | Étiquettes: Autonomous switching sequence, Hybrid switched systems, Hybrid switching systems, Hybrid systems, Identification problem, Numerical methods, Optimization techniques, Particle swarm, Particle swarm optimization, Particle swarm optimization (PSO), Swarm optimization, Switching instants, Switching sequence @conference{Saafi2023b, In this paper we propose a new optimization technique based on an evolutionary method known as particle swarm optimization (PSO) for solving and specifying the switching instants of hybrid systems. The main objective is to minimize a performance measure that depends on these switching instants within a finite time interval. Our approach assumes that there is a predefined sequence of system modes and, at each switching instant, it is possible for a state-space variable to jump from one mode to another, resulting in an additional associated cost. Our approach is justified by numerical examples and compared with the results obtained by gradient-based methods. The results obtained by PSO are very promising, without requiring any a priori assumptions about the regularity of the objective function to be minimized. © 2023 IEEE. |
2013 |
Chetoui, Manel; Thomassin, Magalie; Malti, Rachid; Aoun, Mohamed; Najar, Slaheddine; Abdelkrim, Mohamed Naceur; Oustaloup, Alain New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Algorithms, commensurate order, Differential equations, Errors, Errors in variables, Estimation, Fractional differentiation, Higher order statistics, Identification (control systems), Identification problem, Iterative least squares, Least squares algorithm, Non-linear optimization algorithms, Third-order cumulant @article{Chetoui2013860b, The errors-in-variables identification problem concerns dynamic systems in which input and output signals are contaminated by an additive noise. Several estimation methods have been proposed for identifying dynamic errors-in-variables rational models. This paper presents new consistent methods for order and coefficient estimation of continuous-time systems by errors-in-variables fractional models. First, differentiation orders are assumed to be known and only differential equation coefficients are estimated. Two estimators based on Higher-Order Statistics (third-order cumulants) are developed: the fractional third-order based least squares algorithm (ftocls) and the fractional third-order based iterative least squares algorithm (ftocils). Then, they are extended, using a nonlinear optimization algorithm, to estimate both the differential equation coefficients and the commensurate order. The performances of the proposed algorithms are illustrated with a numerical example. |
Chetoui, Manel; Thomassin, Magalie; Malti, Rachid; Aoun, Mohamed; Najar, Slaheddine; Abdelkrim, Mohamed Naceur; Oustaloup, Alain New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Algorithms, commensurate order, Differential equations, Errors, Errors in variables, Estimation, Fractional differentiation, Higher order statistics, Identification (control systems), Identification problem, Iterative least squares, Least squares algorithm, Non-linear optimization algorithms, Third-order cumulant @article{Chetoui2013860, The errors-in-variables identification problem concerns dynamic systems in which input and output signals are contaminated by an additive noise. Several estimation methods have been proposed for identifying dynamic errors-in-variables rational models. This paper presents new consistent methods for order and coefficient estimation of continuous-time systems by errors-in-variables fractional models. First, differentiation orders are assumed to be known and only differential equation coefficients are estimated. Two estimators based on Higher-Order Statistics (third-order cumulants) are developed: the fractional third-order based least squares algorithm (ftocls) and the fractional third-order based iterative least squares algorithm (ftocils). Then, they are extended, using a nonlinear optimization algorithm, to estimate both the differential equation coefficients and the commensurate order. The performances of the proposed algorithms are illustrated with a numerical example. |
Publications
2023 |
2023. |
2013 |
New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). |
New consistent methods for order and coefficient estimation of continuous-time errors-in-variables fractional models Article de journal Dans: Computers and Mathematics with Applications, vol. 66, no. 5, p. 860 – 872, 2013, (Cited by: 30; All Open Access, Bronze Open Access). |