2020 |
Ethabet, Haifa; Raissi, Tarek; Amairi, Messaoud; Aoun, Mohamed Fault Detection and Isolation for Continuous-Time Switched Linear Systems: A Set Membership Approach Conférence 2020, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Average dwell time, Continuous time systems, Fault detection, Fault detection and isolation, Linear matrix inequalities, Linear systems, Measurement Noise, Numerical methods, Set membership approach, Stability condition, Switched linear system, Unknown but bounded, Unknown input observer @conference{Ethabet2020279b, In this paper, the problem of Fault Detection and Isolation (FDI) is investigated for continuous-Time switched linear systems via a set-membership approach. Under the fulfillment of the relative degree property by all the subsystems, the proposed solution is based on the use of a bank of interval unknown input observers. Under the assumption that disturbances and measurement noise are unknown but bounded with a priori known bounds, cooperativity and stability conditions are given in terms of Linear Matrix Inequalities (LMIs) with the fulfillment of an Average Dwell Time (ADT) constraints. Then, upper and lower residuals are computed. A numerical example illustrating the validity of the method in fault detection and isolation is given. © 2020 IEEE. |
Atitallah, Halima; Aribi, Asma; Aoun, Mohamed Diagnosis of time-delay fractional systems using observer-based methods Article de journal Dans: International Journal of Dynamical Systems and Differential Equations, vol. 10, no. 2, p. 128 – 148, 2020, (Cited by: 2). Résumé | Liens | BibTeX | Étiquettes: Convergence conditions, Diagnosis, Fault detection, Fault detection and isolation, Fault isolation, Fractional systems, Luenberger observers, Residual sensitivities, Structured residuals, Time delay, Timing circuits, Unknown input observer @article{Atitallah2020128b, In this paper, two model-based methods are considered for the diagnosis of time-delay fractional systems. Time-delay fractional Luenberger observer without unknown input and time-delay fractional unknown input observer are developed and used for fault detection and isolation. A single observer scheme is needed for fault detection and a bank of generalized (respectively dedicated) observers is required for fault isolation. A theoretical study investigating the convergence condition for each observer-based method in terms of matrix inequalities is presented. Residual sensitivities to faults and to disturbances are studied. Time-delay fractional unknown input observer parameters are computed to obtain structured residuals. This observer ensures unknown input decoupling from the state which results residual insensitive to unknown inputs. Two numerical examples to validate the efficiency of the proposed approaches are given. Copyright © 2020 Inderscience Enterprises Ltd. |
2018 |
Lamouchi, Rihab; Raïssi, Tarek; Amairi, Messaoud; Aoun, Mohamed Interval Observer Design for Actuator Fault Estimation of Linear Parameter-Varying Systems Conférence vol. 51, no. 24, 2018, (Cited by: 5; All Open Access, Bronze Open Access, Green Open Access). Résumé | Liens | BibTeX | Étiquettes: Actuators, Discrete time linear parameter varying (LPV) system, External disturbances, Fault estimation, Interval observers, Linear parameter varying systems, Linear systems, Lower and upper bounds, LPV systems, Parameter estimation, Unknown input observer @conference{Lamouchi20181199b, This work is devoted to fault estimation of discrete-time Linear Parameter-Varying (LPV) systems subject to actuator additive faults and external disturbances. Under the assumption that the measurement noises and the disturbances are unknown but bounded, an interval observer is designed, based on decoupling the fault effect, to compute a lower and upper bounds for the unmeasured state and the faults. Stability conditions are expressed in terms of matrices inequalities. A case study is used to illustrate the effectiveness of the proposed approach. © 2018 |
2015 |
Yousfi, B.; Raïssi, T.; Amairi, M.; Aoun, M. Set-membership methodology for model-based systems prognosis Conférence vol. 28, no. 21, 2015, (Cited by: 3; All Open Access, Bronze Open Access). Résumé | Liens | BibTeX | Étiquettes: Fault detection, Interval estimation, Interval observers, Lower and upper bounds, Measurement Noise, Model-based systems, nocv1, Plant management, Set membership, Unknown input observer, Unknown inputs @conference{Yousfi2015302b, This paper addresses unknown input interval estimation and prognosis for a class of uncertain systems. Under the assumption that the measurement noise and the disturbances are bounded, lower and upper bounds for the unmeasured state and unknown inputs are computed. Then, damage state estimation is formulated as a set-inversion problem. The setmembership methodology is applied to an electromechanical oscillator to show the effectiveness of the proposed technique. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. |
2014 |
Houiji, Marwa; Hamdaoui, Rim; Aoun, Mohamed Detection time for deterministic and stochastic systems with unknown inputs Conférence 2014, (Cited by: 1). Résumé | Liens | BibTeX | Étiquettes: Detection and diagnosis, Deterministic systems, Fault detection, Linear systems, Optimal observers, Robust residuals, Stochastic linear systems, Stochastic systems, Theoretical development, Unknown disturbance, Unknown input observer @conference{Houiji2014b, This paper investigates the detection and diagnosis of actuator faults by using an Unknown Input Observer (UIO).The proposed UIO design guarantees robust residual generation through decoupling the disturbances effects from the faults ones. The discrimination between the faults and the effects of uncertain signals and perturbations on the residues minimizes the duration of fault detection for deterministic systems. Then these results were extended to the general case of stochastic linear systems by using an optimal observers for systems with unknown disturbances and noise. A simulation is done on an aeronautic model to illustrate the theoretical development. © 2014 IEEE. |
Publications
2020 |
Fault Detection and Isolation for Continuous-Time Switched Linear Systems: A Set Membership Approach Conférence 2020, (Cited by: 1). |
Diagnosis of time-delay fractional systems using observer-based methods Article de journal Dans: International Journal of Dynamical Systems and Differential Equations, vol. 10, no. 2, p. 128 – 148, 2020, (Cited by: 2). |
2018 |
Interval Observer Design for Actuator Fault Estimation of Linear Parameter-Varying Systems Conférence vol. 51, no. 24, 2018, (Cited by: 5; All Open Access, Bronze Open Access, Green Open Access). |
2015 |
Set-membership methodology for model-based systems prognosis Conférence vol. 28, no. 21, 2015, (Cited by: 3; All Open Access, Bronze Open Access). |
2014 |
Detection time for deterministic and stochastic systems with unknown inputs Conférence 2014, (Cited by: 1). |