2012 |
Chetoui, Manel; Malti, Rachid; Thomassin, Magalie; Aoun, Mohamed; Najar, Slaheddine; Oustaloup, Alain; Abdelkrim, Mohamed Naceur EIV methods for system identification with fractional models Conférence vol. 16, no. PART 1, 2012, (Cited by: 14). Résumé | Liens | BibTeX | Étiquettes: Continuous time systems, Continuous-time, Cumulants, Differential equations, Errors in variables, Fractional SVF, Higher order statistics, Identification (control systems), Iterative, Iterative methods, Least Square, Monte Carlo methods, Religious buildings @conference{Chetoui20121641b, This paper deals with continuous-time system identification with fractional models in Errors-In-Variables context. Two estimators based on Higher-Order Statistics (third-order cumulants) are proposed. A State Variable Filter approach is extended to fractional orders to compute fractional derivatives of third-order cumulants estimates. The performance of the proposed algorithms is illustrated in a numerical example. Firstly, differentiation orders are fixed and differential equation coefficients are estimated. The consistency of the proposed estimators is evaluated through a study of the tuning parameter and Monte Carlo simulations. Then, the commensurate differentiation order is optimized along with the differential equation coefficients. © 2012 IFAC. |
2011 |
Chetoui, M.; Malti, R.; Thomassin, M.; Aoun, M.; Najar, S.; Abdelkrim, M. N. 2011, (Cited by: 3). Résumé | Liens | BibTeX | Étiquettes: Continuous time systems, Cumulants, Errors in variables, Fractional derivatives, Fractional SVF, High order statistics, Identification (control systems), Indium compounds, Least squares approximations, Numerical methods, Religious buildings, Signal to noise ratio @conference{Chetoui2011b, This paper deals with continuous-time system identification using fractional models in a noisy input/output context. The third-order cumulants based least squares method (tocls) is extended here to fractional models. The derivatives of the third-order cumulants are computed using a new fractional state variable filter. A numerical example is used to demonstrate the performance of the proposed method called ftocls (fractional third-order cumulants based least squares). The effect of the signal-to-noise ratio and the hyperparameter is studied. © 2011 IEEE. |
Publications
2012 |
EIV methods for system identification with fractional models Conférence vol. 16, no. PART 1, 2012, (Cited by: 14). |
2011 |
2011, (Cited by: 3). |