2022 |
Victor, Stéphane; Mayoufi, Abir; Malti, Rachid; Chetoui, Manel; Aoun, Mohamed System identification of MISO fractional systems: Parameter and differentiation order estimation Article de journal Dans: Automatica, vol. 141, 2022, (Cited by: 10). Résumé | Liens | BibTeX | Étiquettes: Continous time, Continuous time systems, Fractional model, Fractional systems, Instrumental variables, Intelligent systems, Monte Carlo methods, Multiple input single output systems, Multiple inputs single outputs, Optimization, Optimization algorithms, Order estimation, Order optimizations, Parameter estimation, Religious buildings, System-identification @article{Victor2022b, This paper deals with continuous-time system identification of multiple-input single-output (MISO) fractional differentiation models. When differentiation orders are assumed to be known, coefficients are estimated using the simplified refined instrumental variable method for continuous-time fractional models extended to the MISO case. For unknown differentiation orders, a two-stage optimization algorithm is proposed with the developed instrumental variable for coefficient estimation and a gradient-based algorithm for differentiation order estimation. A new definition of structured-commensurability (or S-commensurability) is introduced to better cope with differentiation order estimation. Three variants of the algorithm are then proposed: (i) first, all differentiation orders are set as integer multiples of a global S-commensurate order, (ii) then, the differentiation orders are set as integer multiples of a local S-commensurate orders (one S-commensurate order for each subsystem), (iii) finally, all differentiation orders are estimated by releasing the S-commensurability constraint. The first variant has the smallest number of parameters and is used as a good initial hit for the second variant which in turn is used as a good initial hit for the third variant. Such a progressive increase of the number of parameters allows better performance of the optimization algorithm evaluated by Monte Carlo simulation analysis. © 2022 Elsevier Ltd |
2020 |
Mayoufi, Abir; Victor, Stéphane; Malti, Rachid; Chetoui, Manel; Aoun, Mohamed vol. 53, 2020, (Cited by: 1; All Open Access, Bronze Open Access, Green Open Access). Résumé | Liens | BibTeX | Étiquettes: Continuous time systems, Continuous-time, Fractional model, Fractional model identification, Instrumental variables, Monte Carlo methods, Multiple input single outputs, Order estimation, Refined instrumental variables, Single input single output @conference{Mayoufi20203701b, This paper proposes an instrumental variable approach for continuous-time system identification using fractional models with multiple input single output context. This work is an extension of the simplified refined instrumental variable approach (srivcf) developed for single input-single output fractional model identification (Malti et al. (2008a); Victor et al. (2013)) to the multiple input-single output case. Monte Carlo simulation analysis is used to demonstrate the performance of the proposed approach. A study is then provided to motivate differentiation order estimation, and more specifically, commensurate order estimation. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0) |
Mayoufi, Abir; Victor, Stéphane; Malti, Rachid; Chetoui, Manel; Aoun, Mohamed vol. 53, 2020, (Cited by: 1; All Open Access, Bronze Open Access, Green Open Access). Résumé | Liens | BibTeX | Étiquettes: Continuous time systems, Continuous-time, Fractional model, Fractional model identification, Instrumental variables, Monte Carlo methods, Multiple input single outputs, Order estimation, Refined instrumental variables, Single input single output @conference{Mayoufi20203701, This paper proposes an instrumental variable approach for continuous-time system identification using fractional models with multiple input single output context. This work is an extension of the simplified refined instrumental variable approach (srivcf) developed for single input-single output fractional model identification (Malti et al. (2008a); Victor et al. (2013)) to the multiple input-single output case. Monte Carlo simulation analysis is used to demonstrate the performance of the proposed approach. A study is then provided to motivate differentiation order estimation, and more specifically, commensurate order estimation. Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0) |
2018 |
Hamdi, Saif Eddine; Amairi, Messaoud; Aoun, Mohamed Recursive set-membership parameter estimation of fractional systems using orthotopic approach Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 40, no. 15, p. 4185 – 4197, 2018, (Cited by: 5). Résumé | Liens | BibTeX | Étiquettes: Bounded error context, Bounded errors, Errors, Fractional systems, Fractional-order systems, Iterative algorithm, Iterative methods, Monte Carlo methods, Order estimation, Parameter estimation, Set membership approach, Unknown but bounded @article{Hamdi20184185b, In this paper, set-membership parameter estimation of linear fractional-order systems is addressed for the case of unknown-but-bounded equation error. In such bounded-error context with a-priori known noise bounds, the main goal is to characterize the set of all feasible parameters. This characterization is performed using an orthotopic strategy adapted for fractional system parameter estimation. In the case of a fractional commensurate system, an iterative algorithm is proposed to deal with commensurate-order estimation. The performances of the proposed algorithm are illustrated by a numerical example via a Monte Carlo simulation. © The Author(s) 2018. |
Publications
2022 |
System identification of MISO fractional systems: Parameter and differentiation order estimation Article de journal Dans: Automatica, vol. 141, 2022, (Cited by: 10). |
2020 |
vol. 53, 2020, (Cited by: 1; All Open Access, Bronze Open Access, Green Open Access). |
vol. 53, 2020, (Cited by: 1; All Open Access, Bronze Open Access, Green Open Access). |
2018 |
Recursive set-membership parameter estimation of fractional systems using orthotopic approach Article de journal Dans: Transactions of the Institute of Measurement and Control, vol. 40, no. 15, p. 4185 – 4197, 2018, (Cited by: 5). |